Determining an Effective Coagulant Dosage

Raymond D. Letterman
Department of Civil and Environmental Engineering, Syracuse University

Edwin C. Tifft, Jr.
Water Supply Symposium
September 22, 2010
The material in this talk is from:

Expected publication date is December 2010.
The focus of this talk:

- A method* for:
 - selecting the coagulant type
 - estimating the coagulant dosage
 - estimating acid or base requirements, if any

- Hydrolyzing metal salt coagulants
- Removal of NOM (natural organic material)

*Evaluating design alternatives and estimating treatment costs
The method uses:

- The “effective acid content” of hydrolyzing metal salt (HMS) coagulants.
- An understanding of the effect of pH on the solubility of the metal hydroxide precipitate [Al(OH)$_3$ and Fe(OH)$_3$].
- A simple relationship between the initial NOM concentration (TOC) and the HMS dosage.
- Equilibrium chemistry calculations that relate alkalinity – pH – total inorganic carbon conc.
Effective Acid Content of Hydrolyzing Metal Salt Coagulants
Hydrolysis of Al (and Fe)

Aluminum ion \leftrightarrow Aluminum hydrolysis product \leftrightarrow Hydrogen ion

$$\text{Al}^{3+} + 3\text{H}_2\text{O} \leftrightarrow \text{Al}^{2+} + 2\text{H}_3\text{O}^+$$

Bicarbonate ion \leftrightarrow Carbon dioxide \leftrightarrow Hydrogen ion

$$2\text{H}^+ + \text{HCO}_3^- \leftrightarrow \text{H}_2\text{CO}_3 (\text{CO}_2 + \text{H}_2\text{O}) + \text{H}^+$$

Alkalinity and pH decrease
Hydrolysis of Al (and Fe)

\[
\begin{align*}
&\text{Al}(\text{H}_2\text{O})^{3+}_6 \quad \text{aquo aluminum ion} \\
&\text{Al}(\text{OH})(\text{H}_2\text{O})^{2+}_5 \quad \text{mononuclear species} \\
&\text{Al}_{13}\text{O}_4(\text{OH})^{7+}_{24} \quad \text{polynuclear species} \\
&\text{Al(OH)}_3(s) \quad \text{aluminum hydroxide precipitate} \\
&\text{Al(OH)}_4^- \quad \text{aluminate ion species}
\end{align*}
\]

Low pH

High pH
Calculating the Effective Acid Content

Prehydrolyzed product solutions

Effective acid content (meq/mg metal) = \(\frac{300 - 3B}{100(\text{AW})} \)

B = basicity of the product (0 to < 83%)

A W = atomic weight of the metal (Al, AW = 27 g and Fe, AW = 55.9 g)
Calculating the Effective Acid Content

Acidified (acid supplemented) product solutions

Effective acid content (meq/mg metal) = \frac{300}{100(AW)} + \frac{A}{EW(M)}

A = weight percent of pure acid (H$_2$SO$_4$ or HCl)

EW = equivalent weight of the acid (H$_2$SO$_4$, EW = 49 g/eq and HCl, EW = 36.5 g/eq)

AW = atomic weight of the metal (Al, AW = 27 g and Fe, AW = 55.9 g)

M = metal content (weight % Al or Fe) of the coagulant product solution
Example calculation of the effective acid content using numbers from product data sheets
Product Data Sheet Example

Product A

CHARACTERISTICS
Liquid Alum is a clear, light green or yellow to colorless solution. It is a cationic inorganic coagulant and flocculant suitable for industrial and municipal water and wastewater treatment applications.

NSF/ANSI Standard 60: Drinking Water Chemicals - Health Effects; Certified

TYPICAL PROPERTIES
Formula: Aqueous solution of aluminum sulfate
C.A.S. 10043-01-3 (Aluminum sulfate)
pH (neat) 2.0 - 2.4
Specific Gravity @ 70°F (21°C) 1.335
Freezing Point 4°F (-16°C)
Density, lbs/gal., U.S. 11.14
Aluminum as Al, % 4.2 - 4.4
Aluminum as Al₂O₃, % 8.0 - 8.4
Aluminum as Al₂(SO₄)₃•14H₂O (Dry Alum), % 46 - 49
Effective acid content = \(\frac{300 - 3B}{100(AW)} = \frac{300 - 3(0)}{100(27)} = 0.111 \text{ meq/mg Al} \)
Product B

CHARACTERISTICS
Hyper+Ion® 4030 is a colorless to amber colored liquid. It is an advanced cationic coagulant and flocculant suitable for industrial and municipal water and wastewater treatment applications.

TYPICAL PROPERTIES
- Formula: Polyaluminum hydroxychloride solution
- C.A.S.: 1327-41-9 (Polyaluminum hydroxychloride)
- pH (neat): 2.1 - 3.1
- Specific Gravity @ 70°F (21°C): 1.16 - 1.19
- Freezing Point (approx.): 25°F (-4°C)
- Density, lbs/gal., U.S.: 9.7 - 9.9
- Aluminum as Al, %: 6.2 - 6.5
- Aluminum as Al₂O₃, %: 11.7 - 12.3
- Basicity, %: 70 - 75
Product B – Example Calculation

\[\text{Effective acid content} = \frac{300 - 3B}{100(AW)} = \frac{300 - 3(75)}{100(27)} = 0.028 \text{ meq/mg Al} \]

Prehydrolyzed Al product with B = 75%
Product C

Liquid Alum, Acidized 10%

PRODUCT DATA SHEET

CHARACTERISTICS
Liquid Alum, Acidized 10% is a colorless to light green colored liquid. It is an advanced cationic coagulant and flocculant suitable for industrial and municipal water and wastewater treatment applications.

TYPICAL PROPERTIES

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula:</td>
<td>Aqueous solution of aluminum sulfate and sulfuric acid</td>
</tr>
<tr>
<td>C.A.S.</td>
<td>10043-01-3 / 7664-93-9 (Aluminum sulfate / Sulfuric acid)</td>
</tr>
<tr>
<td>pH (neat)</td>
<td>< 1</td>
</tr>
<tr>
<td>Specific Gravity @ 70°F (21°C)</td>
<td>1.26 - 1.28</td>
</tr>
<tr>
<td>Freezing Point</td>
<td>Less than 0°F (-18°C)</td>
</tr>
<tr>
<td>Density, lbs/gal., U.S.</td>
<td>10.5 - 10.7</td>
</tr>
<tr>
<td>Aluminum as Al, %</td>
<td>2.8 - 2.9</td>
</tr>
<tr>
<td>Aluminum as Al₂O₃, %</td>
<td>5.2 - 5.4</td>
</tr>
<tr>
<td>Free Acid, % as H₂SO₄</td>
<td>10</td>
</tr>
</tbody>
</table>

=M

=A
Product C – Example Calculation

Effective acid content = \frac{300}{100(AW)} + \frac{A}{EW(M)} = \frac{300}{100(27)} + \frac{10}{49(2.9)} = 0.181 \text{ meq/mg Al}

Alum with 10\% \text{ H}_2\text{SO}_4
Effective Acid Content - Examples

<table>
<thead>
<tr>
<th>Coagulant Solution</th>
<th>Basicity (B, %)</th>
<th>A, weight % pure acid</th>
<th>M, weight % metal</th>
<th>Calculated Effective Acid Content (meq/mg metal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Sulfate (Alum)</td>
<td>0</td>
<td>0</td>
<td>4.3 (Al)</td>
<td>0.111</td>
</tr>
<tr>
<td>Polyaluminum Chloride (PACl)</td>
<td>80</td>
<td>0</td>
<td>12.3 (Al)</td>
<td>0.022</td>
</tr>
<tr>
<td>Acid Supplemented Alum (Acidized Alum)</td>
<td>0</td>
<td>10 (H₂SO₄)</td>
<td>2.8 (Al)</td>
<td>0.184</td>
</tr>
<tr>
<td>Ferric Sulfate (with 2% excess acid)</td>
<td>0</td>
<td>2 (H₂SO₄)</td>
<td>10 (Fe)</td>
<td>0.058</td>
</tr>
</tbody>
</table>

The effective acid content can also be measured by titration with strong base.
Effective Acid Content

Raw water - pH = 7.3, alkalinity = 38.5 mg/L as CaCO₃ (0.77 meq/L)
Coagulant Product Solutions Used in the Titrations Plotted in the Graph

<table>
<thead>
<tr>
<th>Coagulant Product Solution</th>
<th>Label in Figures</th>
<th>Effective Acid Content (EAC, meq/mg M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid supplemented alum with A =10%</td>
<td>Alum (A=10%)</td>
<td>0.168</td>
</tr>
<tr>
<td>Acid supplemented alum with A = 5%</td>
<td>Alum (A=5%)</td>
<td>0.135</td>
</tr>
<tr>
<td>Conventional Alum (A = 0 and B = 0%)</td>
<td>Alum</td>
<td>0.111</td>
</tr>
<tr>
<td>Polyaluminum chloride with B = 10%</td>
<td>PACI (B=10%)</td>
<td>0.100</td>
</tr>
<tr>
<td>Polyaluminum chloride with B = 50%</td>
<td>PACI (B=50%)</td>
<td>0.056</td>
</tr>
<tr>
<td>Ferric Chloride</td>
<td>Ferric Chloride</td>
<td>0.054</td>
</tr>
<tr>
<td>Ferric Sulfate</td>
<td>Ferric Sulfate</td>
<td>0.054</td>
</tr>
<tr>
<td>Polyaluminum chloride with B = 75%</td>
<td>PACI (B=75%)</td>
<td>0.028</td>
</tr>
</tbody>
</table>
Effective Acid Content

Raw water - pH = 7.3, alkalinity = 38.5 mg/L as CaCO₃ (0.77 meq/L)

meq/L = mg/L x effective acid content
Solubility of the Metal Hydroxide Precipitate

Minimize Residual Aluminum

Establish a Target pH for the Coagulation Process
Aluminum Hydroxide Solubility Diagram

Temperature = 25°C
Ferric Hydroxide Solubility Diagram

Temperature = 25 °C

log[Fe(III)] vs pH diagram showing:
- Fe(OH)$_3$ precipitate
- Fe$^{3+}$
- Fe(OH)$_2^+$
- Fe(OH)$_4^-$
pH of Minimum Al(OH)_3 Solubility

Graph showing the relationship between pH (pHm) and temperature (°C) with pHm defined as pH at minimum soluble Al concentration.
Minimum Soluble Al Concentration

Minimum soluble aluminum concentration Alₘ vs temperature
Alum addition to a solution with an initial alkalinity = 100 mg/L as CaCO$_3$ and initial pH = 8.5
Alum addition to a solution with an initial alkalinity = 10 mg/L as CaCO$_3$ and initial pH = 7.5
Relationship between the initial NOM concentration (TOC) and the HMS dosage
Models for describing HMS dosage – NOM concentration relationship

- Adsorption isotherm approach
 - Steve Dentel, Marc Edwards, Kastl, et al.

- Simple proportionality
 - Van Benschoten and Edzwald, and others

HMS dosage, \(m = R \times \text{TOC}_o \)

\(m = \) hydrolyzing metal salt dosage in mg metal/L
\(\text{TOC}_o = \) raw water total organic carbon concentration in mg C/L
Magnitude of R (proportionality constant)

The pH on the x-axis is the final value after the acid from the HMS coagulant has reacted with the alkalinity of the solution.
Removal of TOC (when $m = R \times TOC_o$)

$$y = 13.871x - 7.1312$$

$R^2 = 0.5497$

TOC removal % does not depend on the final pH. The SUVA of the raw water NOM is an important indicator.

SUVA = UV light absorbance at $\lambda=254$ nm divided by TOC$_o$.
Steps to Selecting a HMS Coagulant

- Select a target final pH (pH_f) based on minimum precipitate solubility (Al salts).
- Estimate the required coagulant dosage using R at pH_f. ($m = R \times \text{TOC}_o$)
- Calculate the final alkalinity at pH_f (alk_f) and the change in the alkalinity ($\text{alk}_o - \text{alk}_f$)
Estimating the change in alkalinity with HMS coagulant addition

- Use the initial pH (pH_o), initial alkalinity (alk_o), and water temperature to determine the total inorganic carbon concentration of the solution (C_T).
Assume C_T remains constant during coagulation (closed-to-atmospheric CO$_2$ assumption) and use the selected value of pH$_f$ with C_T to determine the final alkalinity (alk_f) of the solution.

- Spreadsheet programs
- Special nomographs
- Deffeyes diagram
Deffeyes Diagram Method

Inorganic Carbon Concentration, C_T (millimoles/L)

Alkalinity (milliequivalents/L)

$\text{alk}_o = 1.5 \text{ meq/L}$ $\text{pH}_o = 7.7$

$\text{pH}_f =$

$\text{mg/L as CaCO}_3 = 50 \times \text{ meq/L}$

$\text{alk}_f = 0.6 \text{ meq/L}$

$\text{alk}_o = 1.5 \text{ meq/L}$ $\text{pH}_o = 7.7$

$\text{pH}_f =$
Selecting the type of coagulant

Initial alkalinity (meq/L) Calculated final alkalinity (meq/L) Dosage of any pH adjustment chemical (e.g., NaOH or H₂SO₄) in meq/L

\[
\frac{alk_o - alk_f}{m} = EAC \text{ of coagulant solution (meq/mgM)} \pm \frac{X}{m}
\]

Calculated dosage of coagulant (mg M/L)

\[m = R \times TOC_o\]
Calculating the dosage of pH adjustment chemical(s)

Dosage (mg/L) = \[m \left(\frac{\text{alk}_o - \text{alk}_f}{m} - \text{EAC} \right) \left(\frac{\text{mg of additive}}{\text{meq}} \right) \]

Note: When \[\frac{\text{alk}_o - \text{alk}_f}{m} - \text{EAC} \] < 0 the additive must be a base and the \[\frac{\text{mg}}{\text{meq}} \] quantity is a negative number.
pH adjustment chemicals

<table>
<thead>
<tr>
<th>Additive</th>
<th>Additive Dosage</th>
<th>Change in alkalinity (meq/L)</th>
<th>Change in inorganic carbon concentration, C\textsubscript{T} (moles C/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Bicarbonate (NaHCO\textsubscript{3})</td>
<td>1 mg/L</td>
<td>1.19 x 10-2</td>
<td>1.19 x 10-5</td>
</tr>
<tr>
<td>Sodium Carbonate (Na\textsubscript{2}CO\textsubscript{3})</td>
<td>1 mg/L</td>
<td>1.89 x 10-2</td>
<td>9.43 x 10-6</td>
</tr>
<tr>
<td>Hydrated Lime (Ca(OH)\textsubscript{2})</td>
<td>1 mg/L</td>
<td>2.7 x 10-2</td>
<td>0</td>
</tr>
<tr>
<td>Sodium Hydroxide (NaOH)</td>
<td>1 mg/L</td>
<td>2.5 x 10-2</td>
<td>0</td>
</tr>
<tr>
<td>Sulfuric Acid (H\textsubscript{2}SO\textsubscript{4})</td>
<td>1 mg/L</td>
<td>-2.04 x 10-2</td>
<td>0</td>
</tr>
<tr>
<td>Hydrochloric Acid (HCl)</td>
<td>1 mg/L</td>
<td>-2.82 x 10-2</td>
<td>0</td>
</tr>
<tr>
<td>Carbon Dioxide (CO\textsubscript{2})</td>
<td>1 mg/L</td>
<td>0</td>
<td>2.0 x 10-5</td>
</tr>
</tbody>
</table>
Example calculation

- $\text{TOC}_o = 11.5 \text{ mgC/L}$
 - SUVA = 3.5 L/m mg
- Temperature = 25 ºC
- $\text{alk}_o = 1.5 \text{ meq/L (75 mg/L as CaCO}_3\text{)}$
- $\text{pH}_o = 7.5$
Select target (final) pH

- $pH_f = 6.1$

pH - minimum solubility of Al(OH)_3 at $T = 25^\circ\text{C}$
Determine HMS coagulant dosage (m)

- $pH_f = 6.1$
- $R = 0.5 \text{ mg Al/mg C}$
- $m = R \times TOC_0 = 0.5 \times 11.5 \text{ mg C/L} = 5.7 \text{ mg Al/L}$
Determine the final alkalinity (alk$_f$)

- Use pH$_o$ = 7.5 and alk$_o$ = 1.5 meq/L

 \[C_T = 1.6 \times 10^{-3} \text{ moles C/L} \]

- Use pH$_f$ = 6.1 and C$_T$ = 1.6 \times 10$^{-3}$ moles C/L

 alk$_f$ = 0.6 meq/L
Determine the effective acid content of the coagulant (or coagulant +)

\[
\frac{\text{alk}_o - \text{alk}_f}{m} = \frac{1.5 - 0.6}{5.7} = 0.158 \frac{\text{meq}}{\text{mg Al}} = \text{EAC} \pm \frac{X}{m}
\]

Options:

1) Use alum with EAC = 0.111 meq/mg Al and supplemental strong acid
\(X/m = 0.158 - 0.111 = 0.047 \) meq/mg Al or \(X = 0.047 \times 5.7 = 0.27 \) meq/L

2) Use acid supplemented alum with A/M = 2.5 % \(\text{H}_2\text{SO}_4/\% \text{ Al}

Effective acid content (meq/mg metal) = \(\frac{300}{100(AW)} + \frac{A}{EW(M)} \)